Abstract Submission Form

NAME OF MAIN AUTHOR
SURNAME: POUGET
GIVEN NAME(S): Jean-Christophe
TITLE: Dr. Ing.

INSTITUTION /ORGANISATION
IRD (Institut de Recherche pour le Développement) Quito

Names of any other authors
Marlon CALISPA (EPN Quito), Marcos VILLACIS (EPN Quito), Thomas CONDOM (IRD Lima), David PURKEY (SEI-US), Bolivar CACERES (INAMHI), Luis MAISINCHO (INAMHI), Roger CALVEZ (IRD Quito), Diego PAREDES (EMAAP Quito)

TITLE OF PAPER
High Mountain Catchments Modelling and Water Resources Planning in Quito (Ecuador) - Comparisons between different glacio-hydrological models on Antizana stratovolcano

THEME/SESSION(S) TO WHICH THIS PAPER IS LINKED –
15 - Integrated water resource management in mountain regions

GEOGRAPHICAL REGION TO WHICH PAPER REFERS
South America

PREFERRED TYPE OF PRESENTATION – both options can be given
Concurrent session (verbal presentation)
Poster session

MAIN AUTHOR’S EMAIL ADDRESS
jcpouget@ird.fr

MAIN AUTHOR’S MAILING ADDRESS
Jean-Christophe Pouget
IRD Ecuador, Apartado 17-12-857, QUITO ECUADOR

Phone number (with country code)
(593 2) 224 38 93
Fax number (with country code)
(593 2) 250 40 20

ABSTRACT (200 words)
Quito constitutes one of the most densely populated Andean basin. The Quito population has increased by 7 since 1950 to reach 2.5 million inhabitants (2007). The imbalance between supplies and demands has led to great transfers from high mountain watersheds with altitude above 3500 m asl, including Amazon catchments. Thus, the Mica system that supplies water to Quito since 2000 uses some catchments of the Antizana stratovolcan (5760 m). These basins are composed by 90% of páramo and 2.5% of glaciers (2006). The glaciers retreat has been of 25% in 40 years. In order to propose an integrated water resources management model to support Quito planification, we tested several models to represent the high mountain hydrology, using 2 high nested watersheds (2.7 and 12.5 km2). The approach taken uses the planning tool WEAP (Water Evaluation and Planning System), run at monthly time-step. The originality of our work is that it links a glacier evolution module to a WEAP’s integrated rainfall-runoff/water resource systems modelling framework to investigate the climate-glacier-hydrology-water management continuum. A double validation of the models was done by comparing observed and simulated streamflows at the 2 control points (2005-2009 period) and the calculated and observed glacier area evolution (1956-2009).

My participation in the conference:
is definite
depends on acceptance of my presentation
depends on external funding

Please complete this form in Arial x 10 font

Please return this form to:
mountain.conf@perth.uhi.ac.uk
by 1 March 2010